
December 2011

IS
SN

 18
66

-5
70

5 
 

 
w

w
w

.te
st

in
ge

xp
er

ie
nc

e.
co

m
 

 
fr

ee
 d

ig
ita

l v
er

si
on

 
 

pr
in

t v
er

si
on

 8
,0

0 
€ 

pr
in

te
d 

in
 G

er
m

an
y

16

© iStockphoto.com/pidjoe

The Future of Testing

The Magazine for Professional Testers



26 The Magazine for Professional Testers www.testingexperience.com

All About Quality
by Leo Smits

Software testing is all about quality. As Kaner states [1]: ‘Soft-
ware testing is an empirical technical investigation conducted to 
provide stakeholders with information about the quality of the 
product or service under test.’ Stakeholders need to have insight 
in quality, software testers provide the required information for 
this. The essential questions then are: What is quality of a prod-
uct or service under test exactly? How can it be determined? 
What information about quality is exactly needed? 

Quality and Decisions

There are many different definitions of quality. Garvin distin-
guishes five distinct approaches to the definition of quality [2]: 
the transcendent approach, the product-based approach, the us-
er-based approach, the manufacturing-based approach and the 
value-based approach. Each approach differs significantly from 
the other approaches and this is reflected in the various defini-
tions of quality. All approaches offer valuable definitions of qual-
ity for software testers.

Here however, a different perspective is presented. This perspec-
tive centers on ‘decision’. The definition of quality is derived from 
the role it has in the context of decisions. This leads to a definition 
that significantly differs from the definitions of the other five ap-
proaches. On the other hand, there are common concepts. Espe-
cially the user-based approach does overlap.

First take a look at ‘decision’. Individuals make decisions constant-
ly. In many cases the decision is as trivial as ‘Do I want to drink 
coffee or tea?’ and ‘What shall I take home for dinner from the su-
permarket?’. Sometimes individuals are faced with more difficult 
decisions like ‘Do I purchase this car, or not?’. The types of deci-
sions and their complexity may differ, they all basically share the 
same activities: identification of the available options; ascribing 
values to all options; order the options by value and pick the best 
option (the one with the highest value). An individual does not 
make perfect decisions. He possibly does not identify all options. 
Also, the values he ascribes to the various options are based on his 
capability to do so. But he will carry out these activities. (Note that 
not making a decision implicitly equals a decision.) Otherwise he 
cannot act.

Hence it can be concluded for decisions that:

•	 options must be identified; 

•	 values must be ascribed to the options.

Value is a term that will be discussed in more detail later, but for 
now it is important to highlight two aspects:

•	 Value is subjective. It is the value as perceived by the indi-
vidual. Individual A may ascribe a different value to an option 
than individual B. This matches the user-based approach 
which has the premise that quality ‘lies in the eye of the be-
holder’ [2].

•	 Value depends on the context of the decision to be made. Ex-
ample: An individual prefers the taste of coffee to the taste 
of tea, and at the same time he does not want his sleep to be 
disturbed by too much caffeine. He will then ascribe a higher 
value to coffee than to tea at 9:00 AM but he will do the other 
way round at 9:00 PM.

What does this mean for ‘quality’? From the perspective of deci-
sion making, quality has no other meaning than the value of an 
option as compared to the values of other options. And like ‘value’ 
to which quality is related it depends on the individual and the 
context of the decision to be made. There is no absolute quality 
in an object, idea, etc. itself. So quality can only be defined as a 
comparative term.

The ‘comparative’ aspect of quality from another perspective: Im-
agine a person looking at a painting. This person has never seen a 
painting before in his whole life, or in other words: This is the first 
painting he has ever seen and thus the only painting he knows. 
When asked, what quality would he ascribe to that particular 
painting? How many ‘stars’ would he give the painting? The fact 
is he cannot reasonably answer this question about quality since 
he knows no other paintings to compare to.

Summarized, from the decision-perspective quality contains 
three characteristics: 

1. Quality is the value of an option as compared to the values 
of other options

2. Quality is based on perceived values, differing per individual



27The Magazine for Professional Testerswww.testingexperience.com

3. Quality is determined in the context of the decision to be 
made

An object, idea, etc. does only contain quality in the context of a 
decision to be made (i.e. it has no absolute quality). Within that 
context the object, idea, etc. is an option. It is therefore more cor-
rect to speak of ‘the quality of an option’ than ‘the quality of an 
object’. The definition for quality from a decision-perspective can 
consequently be assembled as follows. Quality of an option is the 
value of that option in comparison to the values of other options, 
as perceived by a person and within the context of a decision to 
be made.

Quality and Software Testing

If quality of an option only exists in comparison to other items 
then what does that mean for software testing? What is the ‘op-
tion’ in the context of software testing and what are the other 
options it must be compared to? 

To answer these questions it must first be clear what decisions 
have to be made. Let’s assume that the information about quality 
that must be provided is intended to support a release decision 
for a system under test (SUT). A release decision in general has 
two basic options: ‘Release the SUT’ or ‘Do not release the SUT’. 
There may also be other options, e.g. ‘Release the SUT except for 
subsystem A’. Looking at the options for a release decision, op-
tions in this case are scenarios. The choice is of the kind ‘What to 
do next?’ Therefore in the context of software testing the word 
‘scenario’ is used for ‘option’.

The two (or more) scenarios can be compared. Scenarios are us-
able in the context of the decision to be made. The conclusion is 
that software testers need to identify the different scenarios for 
their project and then determine the value of all identified sce-
narios. In doing so, quality is determined in the context of a re-
lease decision and quality is determined as a comparative term. 

It still leaves the question what ‘value’ is unanswered. It also rais-
es the question how value can be calculated so that it covers the 
perception of a group of stakeholders. This challenge is caused by 
the fact that quality is based on perceived values of individuals 
whereas the release decision is not made by one individual.

Determining the Value of an Option

The first step in making a decision is determining the values of 
all options (considering the identification of all options as com-
pleted). What unit of measure can be used for ‘value’ to make the 
comparison in the following step possible?

Let’s first look at an example: A couple goes into town to have din-
ner in a restaurant. They have all evening to spend and this dinner 
itself is the reason for their visit to the town. There are two restau-
rants available, one expensive restaurant with a highly acclaimed 
cuisine, the other being a pizzeria with affordable cooking. For the 
purpose of their visit the couple will decide by asking themselves 
‘Which restaurant serves the best food?’ not ‘Which restaurant 
is the most inexpensive?‘. So the expensive restaurant has the 
highest quality. A week later they visit the same town again. This 
time to go to the movies. They have one hour left before the movie 
starts and still need something to eat. In this situation the couple 
decides by asking ‘Which restaurant is the most inexpensive?‘. 
This time the pizzeria has the highest quality. The ‘highest qual-
ity’ more exactly: Highest quality for them, and in the context of 
the current decision to make.

This example shows that quality depends on the decision to be 
made and that subsequently ‘value’ must be related to that deci-
sion as well. In the example ‘value’ is simply based on one simple 
question. In practice decision making is often more complex, but 
it boils down to the same idea: The unit of measurement being 
used supports the decision to be made.

Values in Software Testing 

What unit of measurement supports the decision making for 
software products? What unit of measurement makes the best 
comparison for the scenarios?

To support the decision making process it is required that the 
type of value is accepted by all people involved and that it allows 
for a complete and still feasible comparison. This is possible when 
value is calculated in terms of financial value. Financial value 
eliminates the perceived value to a great extent. This is important 
because a release decision is not made by an individual but by a 
group. It is also in most cases relatively easy to express various as-
pects as a financial value. And even for difficult aspects like dam-
age to reputation it is still possible to do so. 

Looking a bit more in detail, the financial value of a scenario con-
sists of two parts. First the SUT has benefits for the organization. 
Second it has costs that diminish the financial value: defects and 
unmitigated risks. The total value of the scenario is simply the 
subtraction of these two (value = benefits – costs). Neglecting 
the benefits (i.e. only reporting on defects and unmitigated risks) 
leads to an incomplete value, for example: If a choice is offered 
between two cars for the same price, one without damage and 
one with some exterior damage, then what would be the best 
pick? And what if the first car is a cheap small car that has run 
200,000 km and the second car is a luxury car that has run only 
50,000 km?

Conclusions: In software testing the value can be expressed as a 
financial value. The unit of measurement would be for example 
Euro. Also, it is important to look at both costs and benefits of the 
scenarios. Remember that quality only exists as a comparison of 
scenarios and that therefore the values of all scenarios must be 
calculated.

Figure 1 shows the values that must be calculated when software 
testing provides information about quality. It also shows that 
value consists of both benefits and costs. If information about 
quality is solely based on defects and unmitigated risks in the 
system under test (SUT), then only partial information is given. 
Also if quality is based only on the SUT and not on all scenarios, 
then partial information is given. This is shown as the yellow text 
box in the figure.

Implementation

The approach from the perspective of decision has its implica-
tions on the work of software testers. It requires additional activi-



28 The Magazine for Professional Testers www.testingexperience.com

ties from the software testing team, in particular:

•	 Identification of scenarios

•	 Calculation of values for all scenarios

The easiest way to start with identification of scenarios is to take 
only two scenarios to start with. It is always possible to add other 
scenarios later. Calculation of the values for the scenarios can be 
done as soon as the scenarios have been identified, before test 
execution starts. It provides insight in the values at an early stage, 
even if this information is not fully complete. When all tests have 
been executed, the costs for the SUT are known and the calcula-
tions must be updated. At that point the software testing team is 
able to provide the information about quality to the stakeholders. 
They can make a decision, i.e. they can choose from the scenarios. 
If the SUT is released, then the process ends. Otherwise the whole 
sequence starts all over. Two remarks can be made here. First, it 
might be desirable to add or remove scenarios when going into a 
next iteration. Second, based on the values of the scenarios it is 
possible to consider which defects should be fixed based on the 
extra value this will deliver. Note that the ‘Release the SUT’ sce-
nario in principle only needs to have a higher value than the other 
scenario(s). There is no need to maximize the value of ‘Release the 
SUT’. Figure 2 shows the suggested process as described here.

Some suggestions that may aid the implementation:

•	 Much information on value may already be available. It pro-
vides an easy starting point.

•	 Do not calculate values in a very detailed manner from the 
start. First gain experience with the new process and build 
metrics to refine calculations later.

•	 Use standard costs for defects with low severity (e.g. ‘Incon-
venient’ and ‘Cosmetic’).

•	 Keep in mind that costs of a scenario are those costs that are 
made when the SUT is running in a production environment. 
It does not include the costs of the project to develop and test 
the SUT.

Conclusion

A definition of quality from the perspective of decision fits the 
goal of software testing well. 

Following the implications of the new quality definition it ap-
pears that software testers must broaden the scope of their work. 
It will make work more complicated to a certain extent, but it 
results in providing complete information about quality. This in 
turn will allow decisions to be made more accurately. If software 
testers do not provide the complete information (i.e. leaving out 
benefits and scenarios), others will. That is not what should hap-
pen: Providing information about quality is the domain of soft-
ware testers.

References

[1] Cem Kaner, J.D., Ph.D.: Exploratory Testing - Keynote at QAI, 
November 17, 2006

[2] Garvin, David A.: What Does “Product Quality” Really Mean? 
in Sloan Management Review Volume 26 Number 1, Fall 1984

Leo Smits
has 10 years of experience in 
software testing and 15 years 
in ICT. He has worked both 
as a software tester and as a 
test manager. As a test man-
ager he has led the testing 
for several major ICT projects. 
Apart from software testing 
he shows an interest in infor-
mation analysis, requirements 
engineering and the Software 
Development Life Cycle. Leo is 

currently working as a test manager for a Dutch insurance 
company. He is the owner of Smits Haltna and lives in the 
Netherlands.

> biography


